
ABSTRACT

Glioblastoma multiforme (GBM) is an aggressive tumor that typically 
exhibits treatment failure with high mortality rates, is associated with the 
presence of cancer stem cells (CSCs) within the tumor. CSCs possess the 
ability for perpetual self-renewal and proliferation, producing downstream 
progenitor cells that drive tumor growth. Studies of many cancer types, have 
identified CSCs using specific markers, but it is still unclear as to where in the 
stem cell hierarchy these markers fall. This review examines the current 
knowledge on the CSCs markers SALL4, OCT-4, SOX2, STAT3, NANOG, 
c-Myc, KLF4, CD133, CD44, nestin, and glial fibrillary acidic protein, 
specifically focusing on their use and validity in GBM research and how they 
may be utilized for investigations into GBMs cancer biology.
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INTRODUCTION

Glioblastoma multiforme is the most malignant and 
frequently occurring type of primary astrocytomas. It 
accounts for more than 60% of all brain tumors in 
adults. According to presumed cell origin, glioma is 
defined as a primary brain tumor. Its global incidence 
is 10 per 100,000 people (1-2). Its ratio is higher in 
men in comparison to women (2-3). It comprises 
astrocytic tumors (astrocytoma, anaplastic 
astrocytoma and glioblastoma), oligodendrogliomas, 
ependymomas and mixed gliomas (4-7). These are 
the main tumors of the central nervous system (CNS), 
that account for about 80% of all malignant primary 
tumors of the brain (6-8). A grade 4 astrocytoma, 
glioblastoma multiforme is a most severe form of  
glioma. Following treatment, it shows only median 
survival of 25 months. It is responsible for 60% of the 
brain tumors in adults (9-12). Despite several 
advances in research of cancer and modern therapies 
against GBM, it is a deadly disease, it has shown only 
2% improvement in 5 year survival (13) This tumor 
has also shown resistance towards radiotherapy and 
chemotherapy (14-16). The histological features of 
GBM are presence of central necrosis and 
microvascular hyperplasia,which distinguishes it 
from lower grade glial tumors. Other poor prognostic 
characteristics of GBM are palisading cells around 
the area of necrosis (17-18). Some other histological 
features of GBM are atypical nuclei and cellular 
pleomorphism, increased mitosis, hypercellularity, 
development of lumina reminiscent of kidney 
glomeruli (19). The most frequent occurrence site of 
GBM is cerebral hemispheres, 95% of these tumors 

arise in supratentorial region, whereas some 
percentage of tumor present in brainstem, cerebellum 
and spinal cord (20).

Cancer stem cells (CSCs) are cancer cells that have 
the same characteristics as normal stem cells, mainly 
the capability to give rise to all types of cells present 
in a particular cancer sample. Cancer stem cells 
behave as tumor initiating cells or tumor propagating 
cells.  They possesses the ability of self renewal and 
differentiation into various kinds of cells (24). These 
cells show similarity with the property of stem cells 
like infinite cell growth, multipotency, asymmetric 
cell division (25). Cancer stem cells have been 
reported in several types of tumors like prostate 
cancer, colon cancer, hepatocellular cancer, brain 
tumors, osteosarcomas, lung cancer, and melanoma 
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(26). The stem cells properties in human cortical glial 
tumors were discovered in 2002 and these isolated 
precursor cells are competent to make neurospheres 
in vitro (25). Glioblastoma is the most common of all 
lethal brain tumors. The recent standard therapies 
consist of tumor resection, adjuvant chemotherapy 
and chemoradiotherapy (21,26). GBMs involve in 
the expression of multipotent neural stem cells 
(NSCs) that comprise of neurons, oligodendrocytes, 
astrocytes within the mass of tumor (27). In 
malignant glioma, cancer stem cells were defined as 
glioblastoma stem cells (GSCs) and they have the 
potent ia l  to d i fferenta te in to  neurons ,  
oligodendrocytes and astrocytes. The main 
characteristics of glioblastoma cancer stem cells 
contain self renewal (27), angiogenesis, invasion, 
proliferation, pluripotency, neurosphere formation, 
(26) modulation of immune response (27), 
multilineage differentiation and high motility (28-
29) GSCs associated molecular markers express 
differentially in these GSCs. These markers are 
classified according to the site of cellular localization 
like cytoskeletal proteins like nestin , transcriptional 
factors like Sox2, Nanog, Oct-3/4, cell surface 
markers such as LICAM (30-31), CD133, CD15, 
A2B5, polycomb transcriptional suppressors like 
Bmi 1  and Ezh2 (32). Cell surface proteins isolation  
were generally used to define cancer stem cells. The 
detection of these cancer stem cell surface markers is 
an important key in the diagnosis and treatment of 
malignancies. The aim of this review is to define the 
significance of cancer stem cell markers in 
Glioblastoma multiforme.

Cancer stem cells

Recently, cancer stem cells become a major focus 
area in cancer research. Clarke et al. (33) reported 
about CSCs, a cancer cell have the ability of self 
renewal and differentiation into multiple cell 
lineages that play the major role in the heterogeneity 
and the tumor complexity (34) The clonal evolution 
model reveals about the randomly occurring self 
renewal property of the cells, whereas the CSCs 
hypothesis suggests a hierachial arrangement in 
which stem like cells are favoured  (35). CSCs are 
characterized to be resistant to radiotherapy and 
chemotherapy and it possess the capability to remain 
in quiescent stage (36), hence its persistence results 
in the redevelopment of tumors. This proves that 
CSCs may be the cause of poor prognosis, treatment 
failure and disease relapse connected with many 
solid tumors. An intense discussion about the origin 
of CSCs revealed that CSCs originate from cancer 
cells that have been hierarchially downstream to 
provide undifferentiated CSCs. Likewise, cancer 
occur due to mutations, hence CSCs also arises from 
normal stem or progenitor cells. In many tissues and 
organs, an extensive evidence have given about the 
connection between cancer and normal stem cells 
(37). Researchers have separated stem cells from the 
normal brain and formed neurospheres in culture 
using serum free media supplemented with 
cytokines (38). All neurosphere is derived from a 
single stem cell representing their self renewal 
potential. Studies have also been done to isolate 
CSCs from grade IV gliomas. There are a lot of 
examples, which have reported about stem cell 
theory of carcinogenesis. One study proved that 
leukemia arises from leukemic stem like cells 
(LSCs) (40). The isolation and characterization of 
CSCs from solid brain tumors, 10 breast cancer,37 
ovarian cancer,38 leukemia (40) have provide a 
unique information about the tumor initiation and 
maintenance abilities of CSCs gliomas (41). GBM 
and GSM cells have been grown on non-adherent 
surfaces to form tumorspheres (39). Each sphere is 
thought to originate from a single CSC, similar to the 
normal neurospheres originating from a single 
neural stem cell (39). There are a number of 
examples illustrating the stem cell theory of 
carcinogenesis. Evidence has indicated that 
leukemia originates from leukemic stem-like cells 
(LSCs) (40). Furthermore, Al-Hajj et al. (42) 
demonstrated that a small minority of cells within 
breast cancer express CD44 and CD24 surface 
markers, which distinguish and isolate tumor-
initiating cells from non-tumorigenic cells (42). 
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CSCs have also been found in human ovarian cancers 
(43). The identification and isolation of CSCs from 
solid human brain tumors (38), leukemia (40), 
ovarian cancer (43), and breast cancer (42) have been 
achieved and provide a unique opportunity for 
exploring the tumor-initiating and -maintaining 
abilities of CSCs

Biomarkers in GBCSCs 

Ignatova et al. reported  first time about GBCSCs 
and its presence has been identified in several 
studies.The list of these proposed markers are 
CD133, cMyc, CD44, LICAM, KLF4, SOX2, 
STAT3, NANOG, SALL4, Olig2, Bmi 1 (44-48).

SALL4 

SALL4 is a spalt like C2H2 zinc-finger transcription 
factor,that is found on ESCs in a same manner such as 
SOX2 and OCT-4 (49-50). SALL4 is a key role 
player in the progression of the ICM to maintain ESC 
pluripotency and ensure its zygotic survival (49, 51-
52). SALL4 and NANOG interaction has also been 
confirmed by co-immunoprecipitation experiments 
and it has been reported that they work together in a 
similar manner as two ESC markers Oct-4 and SOX2 
in regulation of transcription (53). SALL4 act as a 
main role player in several types of cancers and has 
been previously demonstrated as CSC marker. It has 
also been reported that SALL4 is overexpressed in 
gliomas in comparison to normal brain tissue and its 
higher levels correlated with poor prognosis (54). 
Moreover, suppression of SALL4 reduces cell 
proliferation in gliomas and stimulates apoptosis 
(55). Di Tomaso et al. (56) demonstrated that CSCs 
in GBM express SALL4 along with NANOG. 
Whereas, the utilization of SALL4 marker for CSCs 
in GBM is restricted to a small number of reports (54-
57)

OCT-4

OCT-4 is a transcription factor play a main role with 
NANOG in the propagation of ESCs and they 
perform their work in a synergistic behavior with 
SOX2 to attain this regulation (58). Oct-4 is 
important for pluripotency and mammalian 
embryonic development (59). It has also been linked 
with cancer, which involve in the self renewal of 
CSCs (60, 61). Normal brain tissues do not express 
oct-4 whereas glioma cells express Oct-4 and it is 
concerned with the pathogenesis of GBM (62, 63). 
Indeed, GBM cells express intense staining of OCT-
4 and SOX2.Moreover, majority of cells express 
along with SOX2 and NANOG (61).Therefore, Oct-
4, NANOG and SOX2 play an important role in the 
regulation of CSCs.

SOX2

SOX2  is a member of transcriptional co-factors, 
which is known to be involve in many developmental 
processes and is over-expressed in tumors (64-65)  
SOX2 is a critical factor for maintenance of stem cells 
and it is proposed as a neural progenitor cell marker. It 
play a major role in many cancers such as breast (66), 
rectal (67) and lung cancers (68). SOX2 shows higher 
expression in GBM in comparison to normal brain 
tissue (69). In addition to this, GBM express higher 
SOX2 expression than lower grade tumors (70)

pSTAT3

Cytokines activates signal transducers and activators 
of transcription (STAT) proteins and it involves in the 
regulation of several cytokines and growth factor 
responses (71) STAT3 plays a key role in  cell cycle 
signaling, pluripotency, cell survival and ESC self 
renewal processes (72-74) Inhibition of STAT3 
expression reduce self-renewal but promote cellular 
differentiation, that results in embryo lethality in mice 
(75). Abnormal STAT3 signalling pathways has 
known to be connected with promoting angiogenesis 
and cellular proliferation, weakening of immune 
system, inflammation in cancer  (73-76) There is a 
plenty of studies that proves the role of STAT3 in 
cancer l ike GBM, prostate (77) thyroid,  
skin(melanoma), breast (73) and head and neck cancer 
(78) GBM express high levels of STAT3 than normal 
brain tissues and cells such as astrocytes and 
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Figure II: Schtematic representation of the glioma 
stem cells development. A. Altered over expression 
of pluripotent transcription factors, NANOG, OCT-

4 and SOX2 involve in the promotion of 
multilineage potential in glioma stem cells and 

activates stem cell networks whereas deactivating 
differentiation pathways. B. Multilineage neural 
stem cells express SOX2, NANOG and OCT-4.
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suppression of this molecule results in apoptosis and 
inhibition of tumor proliferation. Many studies on 
STAT3 in GBM have reported the decreased 
expression of STAT3 leads to inhibition of tumor 
growth. It suggested that STAT3 is a potential target 
for cancer treatment (79-83). 

NANOG

NANOG is an ESC transcription factor and its 
expression pattern has been known to be link with 
several types of cancer comprising of lung (84), breast 
(85-86) oral cavity (87) and prostate (88) It has also 
been seen to be involved in the regulation of GBM. 
Stem cell has shown higher expression of NANOG in 
cerebellum and medulloblastoma (89-91) NANOG 
alters the GBM stem cell proliferation, clonogenicity 
and tumorigenecity (92) NANOG suppression in 
GBM inhibits tumor proliferation and invasion (93) It 
is assumed that NANOG along with SOX2 and OCT-4 
is accountable for ESCs ability to maintain their self-
renewal and pluripotency (94-95). Recent data 
revealed about the role for NANOG in the regulation 
of GBCSCs.

c- Myc

c-Myc belongs to a member of the family of Myc 
genes, eventhough c-Myc, I-Myc and N-Myc have 
been involved in tumor growth, hence they are 
considered as nuclear oncogenes (96-97). Over-
expression of c-myc has been associated to cellular 
proliferation (98-99).  c-Myc is known to induce 
cellular dedifferentiation (100) which ensure to form 
iPSCs. cMyc has been found to be involve in the 
pathogenesis of prostate (101) breast (102-103) 
pancreatic (104) lung cancers (105) medulloblastoma 
(106) and GBM (107). Despite their role in generating 
iPSCs, there is an evidence indicating that c-Myc may 
be a marker for progenitor cells rather than ESCs 
(108). Recent studies have demonstrated that c-Myc 
increases the capacity of tumor formation in nestin 
expressing progenitor cells in medulloblastoma. This 
study suggested that c-Myc is found on progenitor 
cells, whereas its role as neural progenitor cell marker 
is not elucidated. In-spite of this, c-Myc is known to be 
associated with GBM, CSC maintenance and self 
renewal and its higher expression has been associated 
with poor prognosis of GBM (107,109-111).

Kruppel-Like Factor 4

Kruppel- like factor-4 (KLF4) is a transcription factor 
that involved in the cell proliferation, differentiation 
and apoptosis (112). It is a member of the KLF family. 
It is characterized by the presence of Cys2/ His 2 zinc 
fingers (113-114). KLF4 is important for the self 
renewal of ESCs and maintenance of pluripotency 

(115-116). It is one of the factors along with Oct-4 and 
Sox2 that re-program  fibroblast to form iPSCs (117) . 
Hence, it is not surprising that higher expression of 
KLF4 is linked with cancer (118-119). The first 
identified oncogene in 1999 was KLF4 (120) and after 
that its higher expression has been reported to induce 
cellular dysplasia and squamous cell carcinomas (121) 
Recent studies suggested that KLF4 is over-expressed 
in 70% of specimens of breast cancer (119) Whereas, 
there is ample evidence, showing that KLF4 inhibits 
formation of tumor and metastasis in different types of 
cancer (122-126). It is estimated that KLF4 inhibits 
p53, suppressing cell senescence and apoptosis and it 
also activate p21 induced cell cycle arrest (127-129).

There is a limited information on KLF4 expression in 
GBM.A study of  gene expression analysis study 
reports about the over-expression of KLF4 in brain 
tumors rather than GBM (58) A recent studies on GBM 
cells revealed, microRNA targeting of KLF4 ,that 
suppress tumor growth in these cells, however the role 
of KLF4 in GBM is not well understood.

Neural Progenitor CSC Markers

Nestin

The nestin gene (Rat.401) is a neuroepithelial stem cell 
gene. It encodes a novel intermediate filament protein 
(130) Nestin is expressed in various types of cancers 
including GBM (131-139). Over-expression of nestin 
has been linked with higher grade gliomas with lower 
patient survival rate (140) In addition to this, down-
regulation of nestin occurs due to inducing 
differentiation of GBM cells.198 It binds to a large 
number of cells in the embryonic brain of mammals 
and during the growth of the central nervous system, 
its presence is correlated with the cellular proliferation 
(141-142) These studies have suggested that nestin 
expressing cells can differentiate into multiple cell 
types, it proposed nestin as an useful stem cell marker 
(143). Whereas, there is an ample evidence that nestin 
is a neural progenitor cell marker, which is present on 
neuron precursor cells (142-144), and it get decreased 
when precursor cells differentiate into neuronal and 
glial cells (144).

Glial Fibrillary Acidic Protein

Glial fibrillary acidic protein is a marker of astrocytic 
maturation, generally used as histological marker of 
tumors of glial origin that involved in normal 
astrocytic functions (145-146) Postnatal and adult 
brain NSCs express GFAP, while embryonic brain 
NSCs do not express GFAP representing that GFAP is 
a marker of mature glial cells. Therefore, it have been 
suggested that GFAP is a progenitor rather than ESC 
marker. GFAP along with nestin has been found to be 
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co-expressed in GBM cells (147) and is known to be 
over-expressed in the serum and peripheral blood of 
patients of GBM in comparison to healthy subjects 
(148-149). However, both these studies have 
elucidated about the GFAP positivity in different 
proportion of GBM patients. Serum study on GBM 
cases have reported over-expression of GFAP in 80% 
cases (149) while peripheral studies on GBM have 
revealed over-expression of GFAP in only 20.6% 
cases. GFAP staining is known as a standard 
diagnostic marker of GBM for samples within the 
CNS (149-152).

CD133

CD133 (PROMININ-1) is a protein, found on the 
plasma membrane and HSCs (153) It is one of the 
cluster of differentiation (CD) antigens (154) In 2003, 
CD133 was found on NSCs (155) Singh et al.20 have 
reported that stem like cells deficient in neural 
differentiation markers along with expression of 
CD133+ in pediatric brain tumors and also represented 
that in the brain of immunodeficient mice, 
CD133+human GBM cells are able to initiate tumor 
formation.21. Additionally CD133 expression have 
been implicated in many types of cancers like 
colorectal and prostate cancer and a greater proportion 
of CD133+ have been correlated in a tumor with poor 
survival (156-158) Due to increased progenitor cell 
activation, GBM tumors recurrence after radiotherapy 
and chemotherapy showed amplified percentage of 
cells with CD133+ in comparison to original tumors 
(159). Additionally,CD133+ gene transcription signal 
can differentiate GBM  from low grade tumors and its 
expression has been confirmed to the severity of the 
tumors (159). These studies have suggested that 
CD133 play an important role in tumor invasion and 
recurrence, whereas all stem cell not express CD133.

CD44 

Cd44 is a transmembrane glycoprotein. It acts as a 
receptor for glycosaminoglycans hyaluronan (HA) 
(160-161). It is found in many tissues and is present on 
embryonic epithelia during development (162). The 
processes such as splicing and post-translational 
modifications evolved multiple forms of CD44.The 
most common isoform is CD44s and other variant is 
CD44v (163). Different types of variations on the 
CD44 receptor may contribute to its involvements in 
different pathways such as angiogenesis, cellular 
adhesion, cytokine release and lymphocyte activation 
(162). Moreover,CD44 has been seemed to be involve 
in head and neck cancer (164-165), 1non small cell 
lung cancer, breast (166-168) prostate (169-171) and 
colorectal cancers (172-173) . A study of xenografted 

mice has reported that CD44+ cells are able to generate 
new tumors as like the original tumor, whereas, CD44 
cells are not able to achieve this.65A study on GBM 
cell lines and tumors has elucidated the expression of 
CD44 in 100% of these cases (174).This was supported 
by the immunohistochemical staining of CD44 and  its 
another variants in the comprehensive study on GBM 
(175) Additionally, suppression of CD44 inhibits 
progression of GBM, characterizing its role in tumor 
promotion, whereas, many GBM cell lines have shown 
varying expression of CD44 (176). A broad study on 
mouse cerebellum has shown the cell surface marker 
CD44 co-expression along with other marker such as 
brain lipid binding protein,nestin,SOX2 and astrocyte 
specific glutamate transporter, these all are related to 
neural stem/ progenitor cells (177) CD44 is also found 
to be co-expressed with progenitor marker 
Oligodendrocytes,Olig2.This evidence would suggest 
that CD44 is a progenitor cell marker because it is 
present on differentiated cells. CD44 is also co-
expressed with the oligodendrocyte progenitor marker 
Olig2. This evidence would infer that CD44 is a 
progenitor cell marker, as it is present on partially 
differentiated cells.

CONCLUSION

GBM (Grade IV gliomas)  is the severe  forms of 
cancer. It is difficult to treat and remain incurable. 
There is no  major recent therapeutic advances  have 
been noticed for treatment for Grade IV gliomas, but 
there is the main exciting advances  providing minor 
improvement in the survival rate. Recent research has 
elucidated about the CSC theory of cancer 
progression, presenting that grade IV gliomas 
contain GSCs. These GSCs possess the ability of 
invasion, resistance, therapeutic and tumor 
recapitulation post-treatment. Therefore, targeting 
GSCs  may help improve poor prognosis and offer the 
possibility of a cure. In this review, we target many 
markers published in recent studies and proposed 
CSCs as a major focus area in the context of GBM. 
Current studies have focused on a large set of markers  
that help in the characterization and isolation of 
tumors in order to prove these markers as therapeutic 
target .In the light of these observation, we have 
discussed about the role of  a  variety  of markers 
such as OCT-4,SOX-2, NANOG, CD44, CD133, 
GFAP, SALL4, nestin and KLF4.The further 
investigation  is required to prove  these markers  in 
GSCs  useful for early diagnosis in GBM. Hence, 
introduction of specific therapies against CSCs help 
to improve the survival rate and quality of life of 
patients of cancer with the main emphasis on 
metastatic stage (23).
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