DETERMINATION OF SEX FROM FOOTPRINT DIMENSIONS AMONG NUPE ETHNIC GROUP IN MINNA NIGER STATE

Ade Stephen Alabi, Aishat Aniyikaye, Opeyemi Olaoluwa Odunnaike*, Godwin Olawoyin Adunmo

Department of Anatomy

University of Ilorin, Ilorin, Nigeria

Faculty of Basic Medical Sciences, Thomas Adewumi University, Oko, Kwara state, Nigeria.*

ABSTRACT

Determination of personal identity is a basic and pivotal step in forensic investigations and medico legal practices. In anthropological cases, forensic identification is generally carried out through examination of the body or the remains for prints from the body. Thus, the footprint becomes an invaluable index of identification particularly when the whole body is very badly mutilated. This study was carried out to determine the relationship between footprint dimensions and sex among individuals of Nupe ethnic group of Niger State. Sample size of four hundred and twenty one (421) subjects, two hundred and eighty three (283) males and Received on : 27-10-2022 Accepted on : 7-12-2022

Address for correspondence

Dr. Opeyemi Olaoluwa Odunnaike Department of Anatomy Faculty of Basic Medical Sciences, Thomas Adewumi University, Kwara state, Nigeria Email: lordsreborn01@gmail.com Contact no: +234 816 566 8278

one hundred and thirty eight (138) females were used in this study. The footprints were gotten by placing the volunteers' foot on the ink pad and it was then transferred on an A4 paper, where the footprint dimensions were later measured with a meter rule. The results of this study show that sex differences were highly significant using toe lengths and breadth ($P \le 0.01$) but the footprint indices shows no statistical significance. Footprint dimension is sexually dimorphic. Footprint dimensions can be used to determine sex in addition to or in absence of skeletons such as long bones and skull. It can be applied in forensics for medico legal cases, shoe designing, fashion design and industrial design to optimize products.

KEYWORDS:- Footprint Dimension, Sexual Dimorphism, Nupe Ethnic Group.

INTRODUCTION

Personal identification is a basic and pivotal step in forensic investigations and medico legal practices. In anthropological cases, forensic identification is generally carried out through examination of the body or the remains for prints from the body. Thus, the footprint becomes an invaluable index of identification particularly when the whole body is very badly mutilated.(1)

The construction of a biological profile by implementing standards specific to a particular population is a very fundamental and significant step in identification. The high likelihood of recovering a fleshed feet from crime scenes or from victims of mass disaster makes footprint an additional source of evidence needed for forensic investigations.(2)

The use of footprint in personal identification is an emerging technique in biometrics.(3) At crime scenes, footprints are often recovered from several different surfaces like the floor, table top, the wall among others.(4) Foot print dimensions evaluate morphological features such as foot width, foot length, shape and size.(5) Only a limited number of studies have made attempts to use footprint dimensions in sex determination. This study aimed to determine the relationship between footprint dimensions and sex. The data presented in this study is of immense value to forensic anthropology researchers and medico-legal investigators in the determination of the sex of a person.

OBJECTIVES

1. To determine the relationship between sex and footprint dimensions.

2. To establish uniqueness of foot dimensions.

3. To establish the footprint dimensions of Nupe ethnic group.

MATERIALS AND METHOD

Study population

The study was conducted in two different local government areas in Niger State for duration of two weeks. Niger state; located in north-central Nigeria, had been projected to have a population estimate of 3,954,772 by 2016 according to the 2006 national population census, with the Nupe tribe making up to

1,759,874 of the total number. (6)

SAMPLE SIZE

Fischer's formulae was used to determine sample size

$$SS = \frac{Z^2 x p x q}{d^2}$$

being a large population (>10,000). It states thus:

INCLUSION CRITERIA

All subjects had to be Nupe indigenes, ditto for both parents till the second generation.

All subjects had to fall within the age range of 15 to 65 years. All subjects were verified to have a healthy foot without any form of deformity or open injury.

EXCLUSION CRITERIA

Non indigenes of Niger state, subjects that were not in the age group and subjects with open foot injury or deformity were all excluded.

ETHICALAPPROVAL

Ethical approval was received from the ethical review committee of the Department of Anatomy, University of Ilorin, Ilorin, Kwara state, Nigeria. The protocols for conducting a field research work were strictly adhered to.

DATA COLLECTION METHODS

The foam pad was filled with oil-less ink to form an ink pad before commencing the collection of samples. Participants were provided with water to wash their feet for hygiene purposes and a towel was provided to dry the feet. They were then asked to stand on an ink pad (that had previously been soaked in endorsing ink) applying minimal pressure. From the ink pad, they were asked to step on two A4 papers that had been set aside on a smooth, hard and clean surface (a plank) to get the footprint sample. From the footprint sample, the following parameters were measured with the aid of a scientific ruler:

i. Toe length; the distance between the tip of the toe to the pternion. The toe length for the five toes were measured and labelled T1 to T5.

ii. Breadth at ball (BAB): maximum breadth between the medial margin of the head of the metatarsal print and lateral margin of fifth metatarsal print.

iii. Breadth at heel (BAH): the widest part of the heel.

iv. Heel-ball index: BAH/BAB x 100.

v. Footprint index: Maximum footprint breadth/maximum footprint length x 100.

vi. Base line: perpendicular to the heel at the rear

Fig. 1: Stepping on the Ink

Fig. 2: Stepping on the A4 Paper

Fig 3: Measuring the Footprint

edge of footprint.

STATISTICALANALYSIS

In this current study, footprints dimensions were studied in 421 subjects. The data collected was analyzed using SPSS software (IBM R Version 23.0; SPSS, Inc., Chicago, IL). The SPSS was used for the descriptive statistics and discriminant function analysis (DFA).

DFA was used to estimate sex; it is achieved by accurate categorization. The confidence level was set at 95% and P<0.05 was taken to be significant.

RESULTS

PRESENTATION OF RESULTS

The footprint dimensions obtained from Nupe ethnic group in Niger state were analyzed for sex determination. The variables were presented as categorical variable which were described as frequency (percentages) and continuous variables as mean (\pm S.D) in tables and graphs.

Majority of the study population were males; 281 (67%), while the rest were females; 140 (33%). The mean age group of males was 19.76 ± 6.58 yrs while that of females was 21.22 ± 7.75 yrs.Toe length, foot breadth and base length showed significantly higher mean values in males compared to females and these differences were found to be statistically significant (p value ≤ 0.01), while there were no significant differences in the footprint index and heel-ball index p between both sexes.

Table 2 shows a statistically significant difference $(p \le 0.01)$ in the right and left fifth toe length and base length of both males and females, which is an indication of asymmetry. It can also be inferred from this table that there is an indication of asymmetry in the right and left breadth at heel and heel-ball index in only males as there was a statistically significant difference $(p \le 0.01)$.

Variable	Corr	Mean(±S.D) and Test of mean difference								
Variable	Sex	Right Side	M.D	T-value	P-value	Left Side	M.D	T-value	P-value	
T1 (cm)	Male	25.02±1.25	1 711	12 705	0.000	25.17±1.26	1.020	14.583	0.000	
	Female	23.31±1.09	1.711	13.795	0.000	23.34±1.11	1.830	14.365		
T2 (cm)	Male	24.6±1.28	1.735	13.448	0.000	24.69±1.31	1.776	13.462	0.000	
	Female	22.86±1.17	1.755	13.448	0.000	22.91±1.19	1.770	13.402	0.000	
T3 (cm)	Male	23.63±1.23	1.615	12.865	0.000	23.68±1.27	1.651	12.882	0.000	
	Female	22.01±1.18	1.015	12.803	0.000	22.03±1.16	1.031		0.000	
T4 (cm)	Male	22.44±1.18	1.483	12.395	0.000	22.46±1.18	1.543	12.787	0.000	
	Female	20.96±1.11	1.465	12.393	0.000	20.92±1.14	1.343		0.000	
T5 (cm)	Male	21.04±1.24	1 / 10	11 752	0.000	20.95±1.12	- 1.443	12.647	0.000	
	Female	19.63±1.00	1.418	11.753	0.000	19.51±1.08				
BAB (cm)	Male	9.49±0.61	0.754	12.166	0.000	9.45±0.61	0.676	10.820	0.000	
	Female	8.73±0.58	0.734	12.100	0.000	8.78±0.59	0.070			
BAH (cm)	Male	5.58±0.70	0.365	5.038	0.000	5.41±0.66	0.263	2 800	0.000	
	Female	5.21±0.70	0.303	5.058	0.000	5.14±0.64	0.205	3.890		
FPI	Male	36.31±2.27	-0.092	-0.386	0.700	36.46±2.20	-0.102	-0.426	0.670	
	Female	36.4±2.37	-0.092	-0.380	0.700	36.56±2.55	-0.102			
HBI	Male	58.6±7.59	-1.403	-1.831	0.068	57.33±6.74	-1.613	-2.256	0.025	
	Female	60.01±7.04	-1.403	-1.031	0.008	58.95±7.24				
BL (cm)	Male	4.52±0.48	0.149	2 0.28	0.003	4.41±0.52	0.118	2.225	0.021	
	Female	4.37±0.46	0.149	3.028	0.005	4.29±0.44	0.118	2.325	0.021	

 Table 1: The Descriptive Characteristics of the Footprint Dimensions and Indices for Males and Females and

 Test of Mean Difference

		Paired Samp	le Test (M	[ale)			Paired Sam	ple Test (Female)	1	
Paired	l Sample	M.D (±S.D)	t-value	P-value	R	P- value	M.D (±S.D)	t-value	P- value	r	P- value
Pair 1	RT1	-0.14±1.42	-1.689	0.092	0.364	< 0.001	-0.02±0.51	-0.547	0.586	0.892	< 0.001
	LT1	0.11-11.12	1.009	0.072	0.501	-0.001	0.02=0.01	0.2 17	0.200	0.072	0.001
Pair 2	RT2	-0.09 ± 1.42	-1.073	0.284	0.403	< 0.001	-0.05±0.51	-1.170	0.244	0.909	< 0.001
	LT2	-0.07±1.42	-1.075	0.204	0.405	<0.001	-0.05±0.51	-1.170	0.244	0.909	<0.001
Pair 3	RT3	-0.05±1.39	-0.611	0.541	0.388	< 0.001	-0.01±0.35	-0.485	0.628	0.956	< 0.001
	LT3	-0.05±1.59	-0.011	0.541	0.588	<0.001	-0.01±0.33	-0.405	0.028	0.950	<0.001
Pair 4	RT4	-0.02±0.41	-0.773	0.440	0.940	< 0.001	0.04±0.37	1.339	0.183	0.947	< 0.001
	LT4	0.02=0.11	0.775	0.110	0.910	-0.001	0.01±0.57	1.557	0.105	0.217	0.001
Pair 5	RT5	0.09 ± 0.71	2.090	0.038	0.825	< 0.001	0.11±0.54	2.495	0.014	0.868	< 0.001
	LT5	0.09±0.71	2.070	0.050	0.025	-0.001	0.11±0.51	2.195	0.011	0.000	-0.001
Pair 6	RBAB	$0.04{\pm}0.49$	1.230	0.220	0.678	< 0.001	-0.04±0.44	-1.120	0.265	0.718	< 0.001
	LBAB	0.04±0.47	1.230	0.220	0.078	<0.001	-0.04±0.44	-1.120	0.205	0.710	~0.001
Pair 7	RBAH	0.17±0.52	5.511	0.000	0.708	< 0.001	0.07±0.52	1.581	0.116	0.697	< 0.001
	LBAH	0.17±0.52	5.511	0.000	0.708	<0.001	0.07±0.32	1.361	0.110	0.097	~0.001
Pair 8	RFPI	-0.15±1.83	-1.368	0.173	0.665	< 0.001	-0.16±1.86	-1.014	0.312	0.716	< 0.001
	LFPI	-0.13 ± 1.83	-1.500	0.175	0.005	<0.001	-0.10±1.00	-1.014	0.512	0.710	\0.001
Pair 9	RHBI	1.27±6.39	3.338	0.001	0.609	< 0.001	1.06±6.78	1.854	0.066	0.550	< 0.001
	LHBI	1.27±0.39	5.558	0.001	0.009	~0.001	1.00±0.78	1.004	0.000	0.550	~0.001
Pair 10	RBL	0.11±0.45	4.160	0.000	0.596	< 0.001	0.08±0.41	2.348	0.020	0.578	< 0.001
	LBL	0.11±0.45	4.100	0.000	0.390	~0.001	0.00±0.41	2.340	0.020	0.578	~0.001

 Table 2: The Test of Side Differences and Correlations of Parameters for Males And Female

		Wil	ks' Lambda	Test of Equality of G	Froup Mean	
Variable	Wilks' Lambda (Right)	F	Sig.	Wilks' Lambda (Left)	F	Sig.
T1 (cm)	0.688	190.309	< 0.001	0.663	212.667	< 0.001
T2 (cm)	0.699	180.850	< 0.001	0.698	181.232	< 0.001
T3 (cm)	0.717	165.506	< 0.002	0.716	165.954	< 0.001
T4 (cm)	0.732	153.640	< 0.003	0.719	163.507	< 0.001
T5 (cm)	0.752	138.135	< 0.004	0.724	159.940	< 0.001
BAB (cm)	0.739	148.021	< 0.005	0.782	117.069	< 0.001
BAH (cm)	0.943	25.386	< 0.006	0.965	15.133	< 0.001
FPI	1.000	0.149	0.700	1.000	0.182	0.670
HBI	0.992	3.352	0.068	0.988	5.091	0.025
BL (cm)	0.979	9.168	0.003	0.987	5.407	0.021

Table 3: Wilks' Lambda Unidimensional Test for Equality of Means

Wilks' Lambda	Canonical Correlation Analysis						
Right Side		Lambda (A)	Eigenvalue ^a	r _c	Rc ²		
Lambda (A)	0.621						
Chi-square	197.061						
DF	10	F1	0.61	0.615	37.82%		
p-value	< 0.001						
Left Side							
Lambda (Λ)	0.587						
Chi-square	220.308	F1	0.703	0.642	41.22%		
DF	10	I'I	0.703	0.042	+1.22/0		
p-value	< 0.001						

Table 4: Wilks' Lambda test for predictability into group membership and Canonical correlation analysis.

Note:

a. First 1 canonical discriminant functions were used in the analysis.

 r_{c} Canonical correlation

 \mathbf{R}_{c}^{2} Prediction model accuracy

Table 4 displays a strong percentage contribution of the variables to the prediction model. It revealed a 37.8% and 41.2% effect for the right and left sides respectively in either the male or the female group. This is suggested by the overall model acceptability (r_c) of 0.615² and 0.642² for the right and left sides respectively.

Variables	Right Side			Variables	Left Side		
	F1	F2	F3	Variables	F1	F2	F3
RT1 (cm)	0.863	0.184	0.153	LT1 (cm)	0.85	0.799	0.658
RT2 (cm)	0.841	0.43	0.345	LT2 (cm)	0.785	-0.185	-0.145
RT3 (cm)	0.805	0.244	0.201	LT3 (cm)	0.751	-0.074	-0.059
RT4 (cm)	0.776	-0.58	-0.502	LT4 (cm)	0.745	-0.022	-0.019
RBAB (cm)	0.761	0.557	0.93	LT5 (cm)	0.737	0.458	0.415
RT5 (cm)	0.735	0.299	0.257	LBAB (cm)	0.631	0.042	0.07
RBAH (cm)	0.315	0.279	0.399	LBAH (cm)	0.227	0.614	0.938
RBL (cm)	0.189	-0.169	-0.357	LBL (cm)	0.136	-0.248	-0.506
RHBI	-0.115	-0.24	-0.032	LHBI	-0.132	-0.502	-0.073
RFPI	-0.024	-0.242	-0.105	LFPI	-0.025	-0.09	-0.039
Intercept/constant	-	-	-14.376	Intercept/constant	-	-	-17.196

Table 5: Variable Prediction and Discriminant Function Coefficients

Note

F1 Factors correlations.

F2 Standardized canonical discriminant function coefficients.

F3 Unstandardized canonical discriminant function coefficients.

In table 5, the foot dimensions with significantly high predictor capability for sex grouping were RT1 (0.863), LT1 (0.85), RT2 (0.841), LT2 (0.785), RT3 (0.805), LT3 (0.751), RT4 (0.776) LT4 (0.745), RT5 (0.735), LT5 (0.737), RBAB (0.761), LBAB (0.631), RBAH (0.315), LBAH (0.227), RBL (0.189) AND LBL (0.136) while RHBI, LHBI, RFPI and LFPI had prediction coefficient less than -0.1.

Class	Fc (Right)	Fc (Left)
Female	0.55	0.59
Male	-1.104	-1.185

Table 6: Class Prediction Using Centroids

Table 6 shows the sex-specific resultant group mean (centroid) value of the predictor variables. The

prediction model used in this study produced a centroid mean of -1.104 and -1.185 on the right and left foot respectively for male; while female produced a mean of 0.55 and 0.59 on the right and left foot respectively.

Variables	Right		Left		
Variables	Male	Female	Male	Female	
T1 (cm)	25.468	25.215	18.046	16.877	
T2 (cm)	18.539	17.968	28.568	28.826	
T3 (cm)	-5.931	-6.263	-31.573	-31.468	
T4 (cm)	-7.224	-6.394	33.818	33.852	
T5 (cm)	1.893	1.469	-23.175	-23.911	
BAB (cm)	15.121	13.584	119.901	119.776	
BAH (cm)	-90.561	-91.22	-242.897	-244.562	
FPI	15.567	15.741	12.085	12.154	
HBI	8.096	8.15	22.346	22.475	
BL (cm)	6.437	7.027	11.118	12.016	
(Constant)	-769.347	-746.733	-1138.484	-1109.187	

 Table 7: Classification Function Coefficients (CFC)

 in the Model for the right and Left Footprints.

Table 7 shows the Linear Discriminant Function Coefficients illustrating the prediction of sex using the centroids of the predictor variables.

Categorization of sex based on the discriminant model was illustrated as;

Male:

(Right foot dimension);-769.347+25.468+18.539 -5.931 -7.224 +1.893 +15.121 -90.561 +15.567 +8.096 + 6.437 +

(Left foot dimension); -1138.484 +18.046+28.568-3 1 . 5 7 3 + 3 3 . 8 1 8 - 2 3 . 1 7 5 + 1 1 9 . 9 0 1 -242.897+12.085+22.346+11.118

Female:

(Right foot dimensions); -746.733 +25.215 +17.968 -6.263 -6.394 +1.469 +13.584 -91.22 +15.741 +8.15+7.027+

(Left foot dimensions); -1109.187 +16.877+28.826-31.468+33.852-23.911+119.776- 244.562+ 12.154+22.475+12.016

.DISCUSSION

Prints as means of personal identification is one of the most accessible methods in forensic anthropology, (7) and examples of such prints are finger prints and footprints. Determination of sex from recovered footprints at crime scenes can help forensic investigators narrow down the pool of possible suspects (8).

The results from this study are consistent with the several related studies conducted on different populations (10,11,12).

Moreover, results from this study also showed a notable significant difference in all the toe lengths (T1 to T5) of males and females with males having longer toe length. This corresponds to a similar study conducted on a population of Haryanvi Jats and North Indian mixed of both sexes, which show significant differences in the toe length of the subjects (9). Variation in toe length across the population inferred

	Predi	Predicted Group Membership ^{a, c}					
Classification	Sex	Male	Female	classification			
Right							
	Male (%)	246 (87.5)	35 (12.5)				
Original	Female (%)	44 (31.4)	96 (68.6)	81.2%			
	Male (%)	244 (86.8)	26 (13.2)	70.20/			
Cross-validated ^b	Female (%)	50 (35.7)	90 (64.3)	79.3%			
Left							
	Male (%)	255 (90.7)	26 (9.3)	02 (00)			
Original	Female (%)	43 (30.7)	97 (69.3)	83.60%			
Cross-validated ^b	Male (%)	255 (90.7)	26 (9.3)	02.000/			
	Female (%)	46 (32.9)	94 (67.1)	82.90%			

Table 8: Initial Classification and Classification After Cross-Validation

Note:

- a. Percentage of original grouped cases correctly classified.
- b. Cross validation of each case in the analysis which involved classification based on the functions drawn from all cases apart from that case.
- *c. Percentage of cross-validated grouped cases correctly classified.*

Table 8 revealed a classification accuracy of 79.3 % (1.9% error difference) and 82.90 % (0.7% error difference) for the right and left foot respectively from the use of footprint dimensions

ERA'S JOURNAL OF MEDICAL RESEARCH, VOL.9 NO.2

that foot dimension varies across respective individuals and sex group.

It was also observed that there was a significant difference in the BAB and BAH lengths of males and females, with males having the larger BAB and BAH length. The differences in Breadth at ball (BAB) and Breadth at heel (BAH) length affirmed the uniqueness of footprint dimension in specific individuals as reported in previously conducted studies.(8) There was no significant difference in the mean difference in FPI and HBI across the sex groups. This is in accordance with a research carried out by Tanuj et al. (8) which recorded that the differences in HBI and FPI were not statistically significant (8).

In the present study, right and left foot dimensions (length and breadth) showed statistically significant difference amongst both male and female as $P \le 0.01$. This is consistent with the studies done by Singla et al. (13) in 2015 and Atal et al (14). in 2017.

Results from this study showed that model of foot anthropometric parameters can be used to effectively predict the sex of an individual, Wilks' Lambda test for predictability into group membership and Canonical correlation analysis showed an overall model acceptability (r_c) of 0.615² and 0.642² for right and left side respectively, which illustrated a percentage contribution by the variables in the model of 37.8% and 41.2% effect in either of the different sex groups. This is against the study carried out by Derya, 2010 (1) which showed an overall model acceptability (r_c) of 0.439² and 0.499² for right and left side respectively, suggesting that Canonical correlation analysis shows higher success for classifying the male group than the female group (1).

This study also showed the accuracy of using footprint dimensions, the right foot only achieved a 79.3 % accurate classification, while the left foot produced an 82.90 % accurate classification (with a 0.7% error difference). This is in accordance with a research carried out on a Ghanaian population which stated the degree of accuracy to be 69.8% and 80.3% in right and left foot respectively, indicating that the left foot provides more accuracy.(15) However, this is in contrast with the research carried out on a Western Australian population in 2013, which shows that the accuracy of 89.5% and 82.4% was recorded; indicating that the right foot provides higher accuracy (16).

CONCLUSION

Footprint measurements are reliable in determination of sex in forensic investigations. Footprint length, footprint breadth, BAB, BAH and base length are higher in males than in females hence sexual dimorphism is evidenced in footprint dimensions. Footprint index appeared to be statistically insignificant and therefore cannot be used in the determination of sex. The uniqueness of footprint dimensions can be established by breadth at ball and breadth at heel dimensions.

RECOMMENDATION

It is strongly recommended that the use of footprint dimension as a determinant for sex membership should be further investigated to corroborate the findings of this research and a similar research be carried out among other ethnic groups.

CONTRIBUTIONS TO KNOWLEDGE

The present study has provided an insight into the relevance of footprint dimensions in sex determination. Therefore the results from this study can be used by Nigerian law enforcement agencies when handling cases of personal identification and scientific criminal detection.

REFERENCES

- 1. Derya A. Estimation of sex from the dimensions of foot, footprints and shoe. Journal of Biological Clinical Anthropology. 2010; 21-29.
- 2. Naomi H, Ambikab F, Nur-Intaniah I, et al. Sex estimation using anthropometry of feet and footprints in a Western Australian population. Forensic Science International. 2013; 231: 1-3.
- Kumar VA, Ramakrishnan ML. Legacy of footprints recognition. Int Journal Comput Appl. 2014; 3: 109-19.
- 4. Sharma BR. Forensic science in criminal investigation and trials. 5th ed. New Delhi: Universal Law Publishing; 2014.
- 5. Chavan LN, Geetah KN, Karuna K, et al. Estimation of stature from foot dimensions of school age group children in Maharashtra State. International Journal of Medical and Clinical Research. 2012; 3(2): 121-126.
- 6. National population commission. Population distribution by sex, state, LGAs and senatorial district. Nigeria National Census 2006. Census priority tables (3).
- 7. Alabi AS, Lateefah AB, Adeoyo OO, et al. Comparative study of lip prints and finger prints and tongue rolling in relation to sex among university of Ilorin students. Journal of Medical Research. 2020; 7(1): 8-13.
- 8. Tanuj K, Kewal K, Disha P, et al. Analysis of heelball index in determination of sex. Egyptian Journal of Forensic Sciences. 2014; 4(2).
- Singla R, Bedi M, Biswas M. Sex estimation from foot anthropometry in Haryanvi Jats and North Indian mixed population. Journal of Academy of Forensic Medicine and Toxicology. 2012; 2(1): 13-16.
- Agnihotri AK, Shukla S, Purwar B. Determination of sex from the foot measurements. The Internet Journal of Forensic Science. 2006; 2(1): 2-4
- 11. Tyagi AK, Rani M, Kohli A. Sexing by foot index. J Forensic Med Toxicol. 2004; 21(1): 10-11.
- 12. Bob-Manuel I, Didia B. Sexual dimorphism in

foot dimensions among adult Nigerians. The Int J Biol Anthropol. 2008; 3(1): 1-6.

- 13. Singla R, Biswas M, Bedi M, et al. Gender differences of foot dimensions: a study on Rajasthanijats and North Indian mixed population. J Punjab Acad Forensic Med Toxicol. 2015; 15(1): 20-2.
- 14. Atal DK, Singh R, Das S. Estimation of stature from foot length in North Indian Population. J

Indian Acad Forensic Med. 2017; 39(2): 149-152.

- 15. Jubilant KA, Godfred KA, Eric BO, et al. Determination of sex from footprint dimensions in a Ghanaian population. Pone journal. 2015; 21-24.
- 16. Hemy N, Flaul A, Khak N, et al. Sex determination using anthropometry of feet and footprints in a Western Australian population. Forensic Science International. Elsevier Ireland Ltd. 2013; 3: 26-29.

Orcid ID:

Ade Stephen Alabi - https://orcid.org/0000-0002-9750-2319

Aishat Aniyikaye - https://orcid.org/0000-0002-1225-1830

Opeyemi Olaoluwa Odunnaike - https://orcid.org/0000-0003-1672-1112

Godwin Olawoyin Adunmo - https://orcid.org/0000-0001-7938-8092

How to cite this article:

Alabi A. S., Aniyikaye A., Odunnaike O. O., Adunmo G. O.: Determination of Sex From Footprint Dimensions Among Nupe Ethnic Group in Minna Niger State. Era J. Med. Res. 2022; 9(2): 156-163.

Licencing Information

Attribution-ShareAlike 2.0 Generic (CC BY-SA 2.0) Derived from the licencing format of creative commons & creative commonsmay be contacted at https://creativecommons.org/ for further details.