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INTRODUCTION

The procedure can be broken down into three steps: I 
dsDNA separation at temperatures over 90°C, (ii) 
primer annealing at temperatures between 50 and 
75°C, and (iii) optimum extension at 72–78°C. A 
programmable thermal cycler controls the rate of 

The second wave of the Coronavirus Disease 2019 
(COVID19) pandemic hit Europe and the rest of the 
world, resulting in a rise in the number of illnesses and 
deaths globally, emphasising crucial challenges in the 
handling of this public health disaster (1-2). For these 
reasons, scientists are debating which diagnostic 
procedures are best for effectively combating the 
impending surge in COVID 19 infections, as well as 
how to differentiate between COVID19 diseases and 
seasonal flu. Population screening approaches have 
been recommended and are currently being developed 
in this perspective for continuous control of the 
COVID19 epidemiological contour and screening the 
immunized population; moreover, it is not yet definite 
which tactic is the most efficient for these vigilance 
programs (3-6). As a result, it is clear that its diagnostic 
test should be chosen based on the trial's clinical or 
monitoring goals, as well as the ability to repeat the test 
multiple times until the individuals are still no longer 
positive. There are three primary types of COVID19 

diagnosis lab tests that meet most of these clinical and 
epidemiological demands – i) Molecular (Real Time-
Polymerase Chain Reaction) RT-PCR swab tests;  ii) 
serological tests; iii) rapid antigen or antibody tests.

The PCR (7-8) has become the new gold standard for 
identifying a wide range of templates in a variety of 
scientific fields, including virology. The approach 
employs a pair of synthetic oligonucleotides or 
primers, each of which hybridizes to one strand of a 
double-stranded DNA (dsDNA) target and spans an 
exponentially reproducible region. The hybridised 
primer serves as a substrate for a DNA polymerase 
(most often Taq, which is derived from the 
thermophilic bacteria Thermus aquaticus), which 
produces a complementary strain by adding 
deoxynucleotides sequentially.
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temperature change (or ramp rate), the length of 
incubation at each temperature, and the number of 
times each set of temperatures (or cycle) is repeated. 
Using electronically controlled heating blocks or fan-
forced warm air flows to modulate the reaction 
temperature, current technologies have greatly reduced 
ramp times. As a result, some of the gold standard cell 
culture, anti-genaemia, and serological assays are 
being replaced by PCR (9). Existing PCR and detection 
assay combinations (referred to as "conventional PCR" 
here) have been utilised to collect quantitative data with 
encouraging results. However, the time-consuming 
post-PCR processing processes required to assess the 
amplicon have hampered these efforts (10).

Electrophoresis of nucleic acids in the presence of 
ethidium bromide and visual or densitometric 
examination of the resultant bands after irradiation 
with ultraviolet light are the traditional methods for 
detecting amplified DNA (11). Southern blot detection 
of amplicon employing labelled oligonucleotide probe 
hybridization is also time demanding and needs 
additional PCR product handling procedures, 
increasing the danger of amplicon spreading 
throughout the laboratory(12).The ability of 
visualising amplicon identification as the 
amplification progressed, as opposed to traditional 
tests, was a welcome one (13). This method has given 
us a lot of information on the reaction's kinetics. It also 
serves as the cornerstone for kinetic or "real-time" 
PCR (6,14-17) . Real-time PCR has already proven to 
be beneficial in laboratories all over the world, thanks 
to the massive amounts of data generated by 
traditional PCR tests. The labelling of primers, probes, 
or amplicon with fluorogenic molecules has enabled 
real-time monitoring of accumulating amplicon. This 
chemistry has evident advantages over radiogenic 
oligoprobes, including the avoidance of radioactive 
emissions, simplicity of disposal, and a longer shelf 
life (18) Reduced cycle times, the elimination of post-
PCR detection processes, and the use of fluorescent 
labels and sensitive mechanisms of detecting their 
outputs are all contributing to real-time PCR's 
enhanced speed (19-20). The incapacity to assess 
amplicon size while opening the system, conflict of 
some systems with specific fluorogenic chemicals, 
and the comparatively limited multiplex potential of 
current applications are all downsides of employing 
real-time PCR in contrast to classical PCR. In 
addition, when employed in moderate laboratories, the 
initial cost of real-time PCR may also be exorbitant. 
Fluorescence resonance energy transport among 
fluorogenic labels either between a fluorescence but a 
gloomy or 'black-hole' non-fluorescent quencher 
(NFQ), whereby disperses excess heat instead than 

fluorescence, is used in the most frequently used 
fluorogenic oligoprobes. Obsess is a spectroscopic 
phenomenon in which power is transferred between 
molecules with overlapping emission and spectral 
separated by 10–100. (21-22) Förster was the one who 
first proposed the mechanism for this procedure: a 
non-radiative causing interaction (23).

Due to the relatively low expenses of the whole viral 
RNA extraction, reverse transcription, as well as 
amplification method, and the existence of RTPCR 
thermal cyclers in health facilities, research centers, 
and private laboratories, RTPCR-based molecular 
tests have been assumed the best diagnostic alternative 
for wide target element  (28). Other benefits of RTPCR 
procedures over other diagnostic techniques include 
the procedure's time savings, ease of performance, and 
lack of the need for highly skilled people (29). 
Furthermore, a variety of RTPCR kits were based on 
onestep amplification procedures, in which the 
nasopharyngeal swab's solution is introduced into the 
plate as well as the machine, performs the extraction, 
reverse transcription, amplification, and evaluation of 
the specimens on its own. These processes enable 
quick findings while also ensuring high reproducibility 
and consistency of the data produced, which is less 
influenced by operational bias (30). Overall, due to the 
quickness of the procedure and the availability of 
instruments in public and commercial medical 
laboratories, RTPCR is the gold standard and the most 
extensively used method for making an accurate 

The gold standard procedures for making a confirmed 
diagnosis of COVID19 infection are RTPCR-based 
molecular assays (24). Since the entire sequencing of 
the (Severe Acute Respiratory Syndrome Coronavirus 2 
(SARSCoV2) genetic code (23), researchers from 
various countries have started developing genomic 
primers or probes specific to SARSCoV2 RNA 
sequences in order to differentiate COVID19 infections 
from other pathologies of clinical features, like seasonal 
flu and bacterial infections (25-26). The SARSCoV2 
entire genome sequence is 29,903 bp long and contains 
the functional components listed below. A 50-base 
polyA cap, an extensive reading frame 1/ab (ORF1/ab) 
comprising the exon for such RNA dependent RNA 
polymerase (RdRP), spikes protein, envelope proteins, 
transmembrane and nucleocapsid proteins, or a 30-base 
polyA tail (27). Currently, genomic regions coding for 
the RdRP gene, proteins composing the nucleocapsid 
(N gene) and spike molecules (S gene), proteins of the 
envelope (E gene), the membrane, and other parts of the 
SARSCoV2 genome are employed to design particular 
primers and probes.

RT-PCR-based molecular tests
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FLUOROPHORES THAT ATTACH TO DNA

The detection methods that distinguish real-time PCR 
from traditional PCR tests will be discussed in the next 
section. There are now 5 major chemistries in use, 
which can be classed as viral specific genomic or non-
specific real-time PCR detection systems (31). The 
fluorescent labels have a name linked with each of the 
chemistries; nevertheless, fluorescence could be used 
to represent these components in general discussion. 
That although focus in this study is on practical 
systems,these chemicals can also be utilised as a tag 
for end-point amplification detection.

The upwards oligoprobe is frequently labelled with a 3′ 
provider fluorophore (FITC), whereas the downstream 
probe is generally labelled with both a LightCycler Red 
640 or Red 705 recipient fluorophore at the 5′ endpoint, 
so that when two oligoprobes are hybridised, the result is 
a positive signal. The two probes are still within 10 
nanometers of each other, earning them the nickname 
"kissing" probes. The optically transparent plastic and 
glass combination capillaries serve as cuvettes for 
fluorescent investigation while also permitting quick 
heat transfer. Three photodetectors diodes with varied 
wavelength filters watch fluorescence as capillaries 
revolve through a florescent light diode. The temp is 
changed by quickly heating and cooling air with a heat 
source and fan that produces 20°C/s ramp rates, allowing 
polymerase life to be prolonged (44) The chiral cyanine 
fluorescence thiazole orange is coupled to a light-up 
probes, which would be a peptide nucleic acid (45). The 
fluorescence becomes highly luminous when hybridised 
with only a nucleic acid target, or as a duplex or triplex, 
based on the oligoprobe's sequencing. These probes do 
not interact with PCR, do not require isomerization, are 
responsive to single nucleotide dissimilarities, enables 
fluorophore melting analysis, and since only one 
reporter is used, a real - time monitoring of fluorescence 
rather than a change in fluorophores among two 
fluorophores can be formed  (45-46). However, during 
later cycles with these markers, non-specific 
fluorescence has been reported (47).

diagnosis of COVID19 infections. Furthermore, the 
COVID19 infection is diagnosed with high sensitivity 
and specificity using the RTPCR tests now present in 
the market.the most common RTPCR diagnostic 
systems now on the market, along with a description of 
their primary technological features.

DETECTION OF AMPLICONS

NUCLEASE OLIGOPROBES 

RT-PCR MOLECULAR BASED TESTS

Homogeneous experiments were rare in the late 1980s, 
but significant developments in thermocycler 
equipment and also the chemistry of nucleic acid 
modification have made them routine since then. The 
effectiveness of these assays is dependent on a signal 
altering in a timely and detectable way when a probe is 
hybridised to its target (48). The time needed for an 
oligoprobe to hybridise to its target is greatly reduced 
when a surplus is used, especially when the quantity of 
that targets has been raised by PCR or another 
amplifying procedure (48). Holland et al. published a 

The DNA-binding luciferase molecule is the 
foundation of sequencing non-specific detection 
approaches. The earliest and most basic real-time PCR 
methods are included in this category. When dsDNA is 
subjected to a sufficient spectrum of light, ethidium 
bromide (32), YO-PRO-1 (33-34), and SYBR® green 
1 (35) all glow. This method requires less specialised 
expertise than the development of fluorescent 
oligoprobes, is less inexpensive, and does not profit 
from changes in the template sequence, that can 
prevent oligoprobe hybridization (36). The synthesis 
of primer-dimers (37) is widespread, and it is tightly 
linked to the PCR entering the plateau phase , along 
with the formation of particular products (38-39). 
When a DNA-binding fluorophore is used with an 
amplicon or other non-specific amplified products, the 

findings can be difficult to interpret. After the 
extended step for which fluorescence data is gathered, 
a short, high thermal incubation is added to reduce the 
impact of these compounds to the fluorophore (40).

The use of a set of two fluorogenic hybridisation 
oligoprobes had first been defined in the late 1980s 
(41-42). and they've since become the preferred 
method for the Light Cycler TM (Roche Molecular 
Biochemicals, Germany), a capillary-based 
microvolume fluorimeter as well as thermocycler with 
quick temperature control (43).

LINEAR OLIGOPROBES

Fig. 1: RT-PCR Machine and the

Multicomponent Plot
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AMPLICON THAT SELF-FLUORESCES

PCR can be used to decide the quantity of template in 
two directions: relative quantification and absolute 
quantitation. Changes in the quantity of a target 
sequence related to its quantity in an associated matrix 
are described by relative quantitation. The exact 
quantity of nucleic acid targets contained in the sample 
in proportion to a certain unit is known as exact 
quantitation (55). In most cases, relative quantitation 
gives adequate information and is easier to implement. 
Absolute quantitation, on the other hand, is important 
for monitoring the progression of an infection because 
it allows scientists and clinicians to communicate data 
in units that are understood by both scientists and 
doctors and can be shared across platforms. When 
there aren't enough sequential specimens to show 
variations in virus loads, there's no suitable 
standardized reference reagent, and or viral load is 
utilized to distinguish active from chronic infection, 
absolute quantification may be required.

A wavelength-shifting hairpin probe, that employs a 
second, catching fluorophore, is a recent advancement 
in this chemistry. Electron density from a blue light 
source is passed through the harvester and released as 
fluorescent radiation in the far-red frequencies. The 
energy is subsequently transferred to a receptive 
'emitter' fluorophore, which emits light at specific 
wavelengths. Using presently offered technologies, 
this could lead to enhanced multiplex real-time PCR or 
SNP detection (53). Because the exact hybridisation of 
the tip is required for these oligoprobes to work, 
precise design is essential.

paper in 1991 that laid the groundwork for 
homogenous PCR with fluorogenic oligoprobes. The 
impact of Taq DNA polymerase's 5′3′ restriction 
enzymes activity on particular oligoprobe/target DNA 
duplexes was used to detect Amplicon. Liquid 
chromatography was utilised to evaluate the 
radiolabelled molecule, and the occurrence or lack of 
hydrolysis was employed as a marker of duplex 
formation. These oligoprobes had a 3′ phosphate 
group, which prevented the polymerase from 
extending them, but had no effect on the amplicon's 
output. The minor groove binding (MGB) oligoprobes 
are still the product of a recent improvement to a 
nuclease oligoprobe. This chemistry contains a ligand 
that maintains the oligoprobe-target duplexes by 
wrapping into the minor groove of the dsDNA and 
replacing the usual TAMRA quencher with an NFQ 
(49). This enables the use of oligoprobes with very 
short lengths (14 nucleotide), which are perfect for 
finding single nucleotide mutations (SNPs). Dual-
labeled oligonucleotide sequencing have also been 
used to provide the signalling component of the 
DzyNA–PCR method (50).

QUANTITY OF VIRUSES

To date, the vast majority of diagnosing PCR assays 
were described in a qualitative, or "yes/no" format. 
True quantification of target DNA molecules has 
moved from the pure research facility to the diagnostic 
lab thanks to the introduction of real-time PCR.

OLIGOPROBES WITH HAIRPINS

The first hairpin oligoprobes were Molecular signals, 
which are a variant of the dual-labelled nuclease 
oligoprobe. The fluorescence - based labels on the 
hairpin oligoprobe were named fluorophore and 
quencher, but they are located at the oligoprobe's 
termini. The labels are kept in close proximity by distal 
stem sections of homologous complementary base, 
which are purposefully intended to generate a hairpin 
structure, resulting in quenching by FRET or straight 
transfer of energy via a collisional process (51). The 
oligoprobe will hybridize and shift into an open 
sources in the context of a complementary sequence 
engineered to occur within the boundaries of a primer 
binding sites. The fluorophore has become spatially 
separated from the action of the quencher, and 
fluorescence emissions are monitored throughout 
each cycle (52).

The notion of a self-priming amplicon is related to that 
of a hairpin oligoprobe, only the label is permanently 
incorporated into the Amplified product. Sunrise 
primers (now commercially known as Amplifluor TM 
hairpin primers) and scorpion primers have already 
been described (31'54). A 5′ fluorophore and a 
DABCYL NFQ make up the sunrise primer. When the 
dawn primer is closed, complimentary sequence 
lengths separate the labels, forming a stem. A 
destination primer sequence is located at the 3′ 
terminus. . The dawn primer's sequence is designed to 
be repeated by the emerging complementary strand, 
which destabilises the stem, keeps the two fluorophores 
apart by 20 nt (54), and allows the fluorophore to 
release its excitation energy for observing (54). Due to 
replication of the sunrise primer sequencing during 
primer-dimer synthesis, this system may exhibit non-
specific fluorescence. Except for a neighbouring 
hexethylene glycol molecule that prevents replication 
of a scorpion's signalling section, the scorpion primer is 
nearly identical in composition. In addition to the 
structural differences, scorpion primers have a slightly 
different function except that the oligonucleotide's 5′ 
region is optimized to fuse to a complementary area 
within the amplicon. As with hairpin probes, such 
hybridisation pulls the labels apart, fracturing the 
hairpin and allowing emission (31).



VIROLOGY APPLICATIONS

Of course, real-time PCR is becoming increasingly 
beneficial for general virological studies, however these 
applications are becoming increasingly difficult to 
analyses due to their nature as a technique rather than the 
emphasis of published studies. Such research has looked 
at the involvement of viruses in a variety of disorders by 
merely confirming the existence or lack of the virus (78-

79) or, in the coming, monitoring the levels of essential 
gene activity  (80) as a result of altered growing 
circumstances Real-time PCR could be used to track 
changes in viral entrance or replication induced by target 
tissue alteration, as well as linkages between 
pathogenicity and cellular gene expression (81-83).

Furthermore, its use of real-time PCR as a method to 
reveal linkages between novel viral sequences and 
clinical symptoms and signs has aided the study of new 
viruses (73,75,92-93). Commercial interests have 
found real-time PCR's speed and quality valuable for 
detecting microbial contamination of humongous 
reagent preparations made through eukaryotic 
expression systems (94-95).

Real-time PCR has improved the speed and scope of 
determining viral strain and titre differences in 
individuals with several syndromes caused by the 
same virus (76). Real-time PCR could also 
consistently find out the amount of two nucleotide 
objectives within a single reaction, which has 
enhanced the speed and range of epidemiological 
research  (70,84). New chemistries have improved the 
discriminating of various viral genotypes inside a 
single vial (85), contributing to morbidity and 
mortality assays for virus identification.

Because of its large dynamic range, which can accept 
at least eight log10 copies of nucleic acid template (58-
68).  Real-time PCR offers considerable advances in 
viral load quantification. In correlation to 
conventional viral culture, traditional single, and 
nested PCR, real-time PCR is a desirable alternative to 
conventional PCR for the research of viral load along 
with its low inter-assay and intra-assay fluctuation 
(60,66,69) and equal or higher analytical sensitivity 
(60,70-75). It has been observed that real-time PCR is 
at least as accurate as a Southern blot (71). Although, 
because using software to generate optimised primers 
or oligoprobes is now more frequent, these data could 
be an underestimate due to such smaller targets, that 
amplify more effectively, by use of different or 
superior primers during real-time assays.

REAL-TIME MULTIPLEX PCR

Multiplexing (amplification of numerous templates in a 
pcr reaction utilizing multiple primers) is a helpful use of 
traditional PCR (77). However, the transition to real-time 
PCR has muddled the terminology. The employment of 
numerous fluorogenic oligoprobes for the discriminating 
of multiple amplicons is more frequently referred to as 
multiplex real-time PCR. Due to the general limited 
number of fluorophores present (14) and the typical use 
of a homogenous energizing light source, the 
transference of this technology has proven difficult.

Although the ultimate values of absolute standard 
curves, relative standard curves, and CT values are all 
comparable (56). the general consensus is that an 
internal control, as well as copies of each sample, are 
required for accurate PCR quantification (38-39). 
However, real-time PCR software that can compute an 
unknown's quantity by comparing signal produced by 
an amplified target and now an internal control is still 
in its infancy. Hopefully, this situation will be rectified 
in future commercial editions (57). 

Real-time PCR has proved tremendously effective in 
the research of infectious illness viral agents and in the 
clarification of disputed infectious disease states. 
When compared to traditional approaches, most of the 
assays published in the literature allow for a higher 
frequency of viral detection, making real-time PCR 
appealing to many areas of virology.

This technology is now a must-have tool for 
thoroughly evaluating viral gene therapy vectors 
before they are used in clinical trials. These studies, 
which test the bioavailability, function, and quality of 
these therapeutic formulations, have most typically 
used nuclease oligoprobes (86-91).

CONCLUSION

As our knowledge of real-time PCR has grown, so has 
the amplified hardware and fluorescence - based 
detection chemicals, and this review attempts to bring 
the scientist up to date on the current state of the art. In 
order to focus on the several areas in which the 
implementation of real-time PCR has offered 
methodologic advantages and better health outcomes, 
we discuss the background, benefits, and restrictions of 
real-time PCR and review the literature as it pertains to 
virus isolation in the regular and research laboratory. 
Furthermore, the technology presented has been used 
in other fields of microbiology, including gene 
expression research and genetic disease research.
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